Go to JCI Insight
Jci spelled out white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • Fibrosis (Jan 2018)
    • Glia and Neurodegeneration (Sep 2017)
    • Transplantation (Jun 2017)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

Jci only white

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Cardiology

  • 362 Articles
  • 3 Posts
  • ←
  • 1
  • 2
  • 3
  • …
  • 36
  • 37
  • →
l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans
Robert A. Koeth, … , Jose Carlos Garcia-Garcia, Stanley L. Hazen
Robert A. Koeth, … , Jose Carlos Garcia-Garcia, Stanley L. Hazen
Published December 10, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI94601.
View: Text | PDF

l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans

  • Text
  • PDF
Abstract

BACKGROUND.l-Carnitine, an abundant nutrient in red meat, accelerates atherosclerosis in mice via gut microbiota–dependent formation of trimethylamine (TMA) and trimethylamine N-oxide (TMAO) via a multistep pathway involving an atherogenic intermediate, γ-butyrobetaine (γBB). The contribution of γBB in gut microbiota–dependent l-carnitine metabolism in humans is unknown. METHODS. Omnivores and vegans/vegetarians ingested deuterium-labeled l-carnitine (d3-l-carnitine) or γBB (d9-γBB), and both plasma metabolites and fecal polymicrobial transformations were examined at baseline, following oral antibiotics, or following chronic (≥2 months) l-carnitine supplementation. Human fecal commensals capable of performing each step of the l-carnitine→γBB→TMA transformation were identified. RESULTS. Studies with oral d3-l-carnitine or d9-γBB before versus after antibiotic exposure revealed gut microbiota contribution to the initial 2 steps in a metaorganismal l-carnitine→γBB→TMA→TMAO pathway in subjects. Moreover, a striking increase in d3-TMAO generation was observed in omnivores over vegans/vegetarians (>20-fold; P = 0.001) following oral d3-l-carnitine ingestion, whereas fasting endogenous plasma l-carnitine and γBB levels were similar in vegans/vegetarians (n = 32) versus omnivores (n = 40). Fecal metabolic transformation studies, and oral isotope tracer studies before versus after chronic l-carnitine supplementation, revealed that omnivores and vegans/vegetarians alike rapidly converted carnitine to γBB, whereas the second gut microbial transformation, γBB→TMA, was diet inducible (l-carnitine, omnivorous). Extensive anaerobic subculturing of human feces identified no single commensal capable of l-carnitine→TMA transformation, multiple community members that converted l-carnitine to γBB, and only 1 Clostridiales bacterium, Emergencia timonensis, that converted γBB to TMA. In coculture, E. timonensis promoted the complete l-carnitine→TMA transformation. CONCLUSION. In humans, dietary l-carnitine is converted into the atherosclerosis- and thrombosis-promoting metabolite TMAO via 2 sequential gut microbiota–dependent transformations: (a) initial rapid generation of the atherogenic intermediate γBB, followed by (b) transformation into TMA via low-abundance microbiota in omnivores, and to a markedly lower extent, in vegans/vegetarians. Gut microbiota γBB→TMA/TMAO transformation is induced by omnivorous dietary patterns and chronic l-carnitine exposure. TRIAL REGISTRATION. ClinicalTrials.gov NCT01731236. FUNDING. NIH and Office of Dietary Supplements grants HL103866, HL126827, and DK106000, and the Leducq Foundation.

Authors

Robert A. Koeth, Betzabe Rachel Lam-Galvez, Jennifer Kirsop, Zeneng Wang, Bruce S. Levison, Xiaodong Gu, Matthew F. Copeland, David Bartlett, David B. Cody, Hong J. Dai, Miranda K. Culley, Xinmin S. Li, Xiaoming Fu, Yuping Wu, Lin Li, Joseph A. DiDonato, W.H. Wilson Tang, Jose Carlos Garcia-Garcia, Stanley L. Hazen

×

An alternative mitophagy pathway mediated by Rab9 protects the heart against ischemia
Toshiro Saito, … , Mondira Kundu, Junichi Sadoshima
Toshiro Saito, … , Mondira Kundu, Junichi Sadoshima
Published December 4, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI122035.
View: Text | PDF

An alternative mitophagy pathway mediated by Rab9 protects the heart against ischemia

  • Text
  • PDF
Abstract

Energy stress, such as ischemia, induces mitochondrial damage and death in the heart. Degradation of damaged mitochondria by mitophagy is essential for the maintenance of healthy mitochondria and survival. Here we show that mitophagy during myocardial ischemia was mediated predominantly through autophagy characterized by Rab9-associated autophagosomes, rather than the well-characterized form of autophagy that is dependent upon the Atg-conjugation system and LC3. This form of mitophagy played an essential role in protecting the heart against ischemia and was mediated by a protein complex consisting of Ulk1, Rab9, Rip1 and Drp1. This complex allowed recruitment of trans-Golgi membranes associated with Rab9 to damaged mitochondria through Ser179 phosphorylation of Rab9 by Ulk1 and Ser616 phosphorylation of Drp1 by Rip1. Knock-in of Rab9 (S179A) abolished mitophagy and exacerbated injury in response to myocardial ischemia without affecting conventional autophagy. Mitophagy mediated through the Ulk1-Rab9-Rip1-Drp1 pathway protected the heart against ischemia by maintaining healthy mitochondria.

Authors

Toshiro Saito, Jihoon Nah, Shin-ichi Oka, Risa Mukai, Yoshiya Monden, Yusuhiro Maejima, Yoshiyuki Ikeda, Sebastiano Sciarretta, Tong Liu, Hong Li, Erdene Baljinnyam, Diego Fraidenraich, Luke Fritzky, Peiyong Zhai, Shizuko Ichinose, Mitsuaki Isobe, Chiao-Po Hsu, Mondira Kundu, Junichi Sadoshima

×

Cardiac CaV1.2 channels require β subunits for β-adrenergic–mediated modulation but not trafficking
Lin Yang, … , Henry M. Colecraft, Steven O. Marx
Lin Yang, … , Henry M. Colecraft, Steven O. Marx
Published November 13, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI123878.
View: Text | PDF

Cardiac CaV1.2 channels require β subunits for β-adrenergic–mediated modulation but not trafficking

  • Text
  • PDF
Abstract

Ca2+ channel β-subunit interactions with pore-forming α-subunits are long-thought to be obligatory for channel trafficking to the cell surface and for tuning of basal biophysical properties in many tissues. Unexpectedly, we demonstrate that transgenic expression of mutant cardiac α1C subunits lacking capacity to bind CaVβ because of alanine-substitutions of three conserved residues — Y467, W470, and I471 in the α-interaction domain of rabbit α1C — can traffic to the sarcolemma in adult cardiomyocytes in vivo and sustain normal excitation-contraction coupling. However, these β-less Ca2+ channels cannot be stimulated by β-adrenergic pathway agonists, and thus adrenergic-augmentation of contractility is markedly impaired in isolated cardiomyocytes and in hearts. Similarly, viral-mediated expression of a β-subunit-sequestering-peptide sharply curtailed β-adrenergic stimulation of wild-type Ca2+ channels, identifying an approach to specifically modulate β-adrenergic regulation of cardiac contractility. Our data demonstrate that β subunits are required for β-adrenergic regulation of CaV1.2 channels and positive inotropy in the heart, but are dispensable for CaV1.2 trafficking to the adult cardiomyocyte cell surface, and for basal function and excitation-contraction coupling.

Authors

Lin Yang, Alexander Katchman, Jared S. Kushner, Alexander Kushnir, Sergey I. Zakharov, Bi-xing Chen, Zunaira Shuja, Prakash Subramanyam, Guoxia Liu, Arianne Papa, Daniel D. Roybal, Geoffrey S. Pitt, Henry M. Colecraft, Steven O. Marx

×

Angiopoietin-2 exacerbates cardiac hypoxia and inflammation after myocardial infarction
Seung-Jun Lee, … , Yoshiaki Kubota, Gou Young Koh
Seung-Jun Lee, … , Yoshiaki Kubota, Gou Young Koh
Published October 8, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99659.
View: Text | PDF

Angiopoietin-2 exacerbates cardiac hypoxia and inflammation after myocardial infarction

  • Text
  • PDF
Abstract

Emerging evidence indicates that angiopoietin-2 (Angpt2), a well-recognized vascular destabilizing factor, is a biomarker of poor outcome in ischemic heart disease. However, its precise role in postischemic cardiovascular remodeling is poorly understood. Here, we show that Angpt2 plays multifaceted roles in the exacerbation of cardiac hypoxia and inflammation after myocardial ischemia. Angpt2 was highly expressed in endothelial cells at the infarct border zone after myocardial infarction (MI) or ischemia/reperfusion injury in mice. In the acute phase of MI, endothelial-derived Angpt2 antagonized Angpt1/Tie2 signaling, which was greatly involved in pericyte detachment, vascular leakage, increased adhesion molecular expression, degradation of the glycocalyx and extracellular matrix, and enhanced neutrophil infiltration and hypoxia in the infarct border area. In the chronic remodeling phase after MI, endothelial- and macrophage-derived Angpt2 continuously promoted abnormal vascular remodeling and proinflammatory macrophage polarization through integrin α5β1 signaling, worsening cardiac hypoxia and inflammation. Accordingly, inhibition of Angpt2 either by gene deletion or using an anti-Angpt2 blocking antibody substantially alleviated these pathological findings and ameliorated postischemic cardiovascular remodeling. Blockade of Angpt2 thus has potential as a therapeutic option for ischemic heart failure.

Authors

Seung-Jun Lee, Choong-kun Lee, Seok Kang, Intae Park, Yoo Hyung Kim, Seo Ki Kim, Seon Pyo Hong, Hosung Bae, Yulong He, Yoshiaki Kubota, Gou Young Koh

×

βIV-spectrin regulates STAT3 targeting to tune cardiac response to pressure overload
Sathya D. Unudurthi, … , Peter J. Mohler, Thomas J. Hund
Sathya D. Unudurthi, … , Peter J. Mohler, Thomas J. Hund
Published September 18, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99245.
View: Text | PDF

βIV-spectrin regulates STAT3 targeting to tune cardiac response to pressure overload

  • Text
  • PDF
Abstract

Heart failure (HF) remains a major source of morbidity and mortality in the U.S. The multifunctional Ca2+/calmodulin-dependent kinase II (CaMKII) has emerged as a critical regulator of cardiac hypertrophy and failure, although the mechanisms remain unclear. Previous studies have established that the cytoskeletal protein βIV-spectrin coordinates local CaMKII signaling. Here we sought to determine the role of a spectrin/CaMKII complex in maladaptive remodeling in HF. Chronic pressure overload (6 weeks transaortic constriction, TAC) induced a decrease in cardiac function in WT mice but not in animals expressing truncated βIV-spectrin lacking spectrin/CaMKII interaction (qv3J). Underlying observed differences in function was an unexpected differential regulation of STAT3-related genes in qv3J TAC hearts. In vitro experiments demonstrate that βIV-spectrin serves as a target for CaMKII phosphorylation, which regulates its stability. Cardiac-specific βIV-spectrin knockout (βIV-cKO) mice show STAT3 dysregulation, fibrosis and decreased cardiac function at baseline similar to WT TAC. STAT3 inhibition restored normal cardiac structure and function in βIV-cKO and WT TAC hearts. Our studies identify a novel spectrin-based complex essential for regulation of the cardiac response to chronic pressure overload. We anticipate that strategies targeting the new spectrin-based “statosome” will be effective at suppressing maladaptive remodeling in response to chronic stress.

Authors

Sathya D. Unudurthi, Drew M. Nassal, Amara Greer-Short, Nehal J. Patel, Taylor Howard, Xianyao Xu, Birce Onal, Tony Satroplus, Deborah Y. Hong, Cemantha M. Lane, Alyssa Dalic, Sara N. Koenig, Adam C. Lehnig, Lisa A. Baer, Hassan Musa, Kristin I. Stanford, Sakima A. Smith, Peter J. Mohler, Thomas J. Hund

×

Inadequate ubiquitination-proteasome coupling contributes to myocardial ischemia-reperfusion injury
Chengjun Hu, … , Jinbao Liu, Xuejun Wang
Chengjun Hu, … , Jinbao Liu, Xuejun Wang
Published September 11, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98287.
View: Text | PDF

Inadequate ubiquitination-proteasome coupling contributes to myocardial ischemia-reperfusion injury

  • Text
  • PDF
Abstract

The ubiquitin-proteasome system (UPS) degrades a protein molecule via two main steps: ubiquitination and proteasomal degradation. Extraproteasomal ubiquitin receptors are thought to couple the two steps but this proposition has not been tested in vivo with vertebrate animals. More importantly, impaired UPS performance plays a major role in cardiac pathogenesis including myocardial ischemia-reperfusion injury (IRI) but the molecular basis of the UPS impairment remains poorly understood. Ubiquilin1 is a bona fide extra-proteasomal ubiquitin receptor. Here we report that cardiomyocyte-restricted knockout of Ubiquilin1 (Ubqln1-CKO) in mice accumulated a surrogate UPS substrate (GFPdgn) and increased myocardial ubiquitinated proteins without altering proteasome activities, and resulted in a late-onset cardiomyopathy and a significantly shortened lifespan. When subject to regional myocardial ischemia-reperfusion, young Ubqln1-CKO mice showed significantly exacerbated cardiac malfunction and enlarged infarct size and, conversely, mice with transgenic Ubqln1 overexpression displayed attenuated IRI. Furthermore, Ubqln1 overexpression facilitated proteasomal degradation of oxidized proteins and the degradation of a UPS surrogate substrate in cultured cardiomyocytes without increasing autophagic flux. These findings demonstrate that Ubiquilin1 is essential to cardiac ubiquitination-proteasome coupling and that an inadequacy in the coupling represents a major pathogenic factor to myocardial IRI, identifying strengthening the coupling as a potential strategy to reduce IRI.

Authors

Chengjun Hu, Yihao Tian, Hongxin Xu, Bo Pan, Erin M. Terpstra, Penglong Wu, Hongmin Wang, Faqian Li, Jinbao Liu, Xuejun Wang

×

The two-pore-domain potassium channel TREK-1 mediates cardiac fibrosis and diastolic dysfunction
Dennis M. Abraham, … , Matthew J. Wolf, Howard A. Rockman
Dennis M. Abraham, … , Matthew J. Wolf, Howard A. Rockman
Published August 28, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI95945.
View: Text | PDF

The two-pore-domain potassium channel TREK-1 mediates cardiac fibrosis and diastolic dysfunction

  • Text
  • PDF
Abstract

Cardiac two pore domain potassium channels (K2P) exist in organisms from Drosophila to humans, however their role in cardiac function is not known. We identified a K2P gene, CG8713 (sandman), in a Drosophila genetic screen and show that sandman is critical to cardiac function. Mice lacking an ortholog of sandman, TWIK related potassium channel (TREK-1 or Kcnk2), exhibit exaggerated pressure overload induced concentric hypertrophy and alterations in fetal gene expression, yet retain preserved systolic and diastolic cardiac function. While cardiomyocyte specific deletion of TREK-1 in response to in vivo pressure overload resulted in cardiac dysfunction, TREK-1 deletion in fibroblasts prevented deterioration in cardiac function. The absence of pressure overload induced dysfunction in TREK-1 KO mice was associated with diminished cardiac fibrosis and reduced activation of c-Jun N-terminal kinase activity (JNK) in cardiomyocytes and fibroblasts. These findings indicate a central role for cardiac fibroblast TREK-1 in the pathogenesis of pressure overload-induced cardiac dysfunction and serve as a conceptual basis for its inhibition for as a potential therapy.

Authors

Dennis M. Abraham, Teresa E. Lee, Lewis J. Watson, Lan Mao, Gurangad S. Chandok, Hong-Gang Wang, Stephan Frangakis, Geoffrey S. Pitt, Svati H. Shah, Matthew J. Wolf, Howard A. Rockman

×

Nox2 in regulatory T cells promotes angiotensin II–induced cardiovascular remodeling
Amber Emmerson, … , Giovanna Lombardi, Ajay M. Shah
Amber Emmerson, … , Giovanna Lombardi, Ajay M. Shah
Published April 24, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97490.
View: Text | PDF

Nox2 in regulatory T cells promotes angiotensin II–induced cardiovascular remodeling

  • Text
  • PDF
Abstract

The superoxide-generating enzyme Nox2 contributes to hypertension and cardiovascular remodeling triggered by activation of the renin-angiotensin system. Multiple Nox2-expressing cells are implicated in angiotensin II (AngII)-induced pathophysiology, but the importance of Nox2 in leukocyte subsets is poorly understood. Here, we investigated the role of Nox2 in T cells, particularly Tregs. Mice globally deficient in Nox2 displayed increased numbers of Tregs in the heart at baseline whereas AngII-induced T-effector cell (Teffs) infiltration was inhibited. To investigate the role of Treg Nox2, we generated a mouse line with CD4-targeted Nox2 deficiency (Nox2fl/flCD4Cre+). These animals showed inhibition of AngII-induced hypertension and cardiac remodeling related to increased tissue-resident Tregs and reduction in infiltrating Teffs, including Th17 cells. The protection in Nox2fl/flCD4Cre+ mice was reversed by anti-CD25 Ab-depletion of Tregs. Mechanistically, Nox2–/y Tregs showed higher in vitro suppression of Teffs proliferation than WT Tregs, increased nuclear levels of FoxP3 and NF-κB, and enhanced transcription of CD25, CD39, and CD73. Adoptive transfer of Tregs confirmed that Nox2-deficient cells had greater inhibitory effects on AngII-induced heart remodeling than WT cells. These results identify a previously unrecognized role of Nox2 in modulating suppression of Tregs, which acts to enhance hypertension and cardiac remodeling.

Authors

Amber Emmerson, Silvia Cellone Trevelin, Heloise Mongue-Din, Pablo D. Becker, Carla Ortiz, Lesley A. Smyth, Qi Peng, Raul Elgueta, Greta Sawyer, Aleksandar Ivetic, Robert I. Lechler, Giovanna Lombardi, Ajay M. Shah

×

Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart
Xing Fu, … , Burns C. Blaxall, Jeffery D. Molkentin
Xing Fu, … , Burns C. Blaxall, Jeffery D. Molkentin
Published April 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98215.
View: Text | PDF

Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart

  • Text
  • PDF
Abstract

Fibroblasts are a dynamic cell type that achieve selective differentiated states to mediate acute wound healing and long-term tissue remodeling with scarring. With myocardial infarction injury, cardiomyocytes are replaced by secreted extracellular matrix proteins produced by proliferating and differentiating fibroblasts. Here, we employed 3 different mouse lineage-tracing models and stage-specific gene profiling to phenotypically analyze and classify resident cardiac fibroblast dynamics during myocardial infarction injury and stable scar formation. Fibroblasts were activated and highly proliferative, reaching a maximum rate within 2 to 4 days after infarction injury, at which point they expanded 3.5-fold and were maintained long term. By 3 to 7 days, these cells differentiated into myofibroblasts that secreted abundant extracellular matrix proteins and expressed smooth muscle α-actin to structurally support the necrotic area. By 7 to 10 days, myofibroblasts lost proliferative ability and smooth muscle α-actin expression as the collagen-containing extracellular matrix and scar fully matured. However, these same lineage-traced initial fibroblasts persisted within the scar, achieving a new molecular and stable differentiated state referred to as a matrifibrocyte, which was also observed in the scars of human hearts. These cells express common and unique extracellular matrix and tendon genes that are more specialized to support the mature scar.

Authors

Xing Fu, Hadi Khalil, Onur Kanisicak, Justin G. Boyer, Ronald J. Vagnozzi, Bryan D. Maliken, Michelle A. Sargent, Vikram Prasad, Iñigo Valiente-Alandi, Burns C. Blaxall, Jeffery D. Molkentin

×

A common variant alters SCN5A–miR-24 interaction and associates with heart failure mortality
Xiaoming Zhang, … , Barry London, Ryan L. Boudreau
Xiaoming Zhang, … , Barry London, Ryan L. Boudreau
Published February 19, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI95710.
View: Text | PDF

A common variant alters SCN5A–miR-24 interaction and associates with heart failure mortality

  • Text
  • PDF
Abstract

SCN5A encodes the voltage-gated Na+ channel NaV1.5 that is responsible for depolarization of the cardiac action potential and rapid intercellular conduction. Mutations disrupting the SCN5A coding sequence cause inherited arrhythmias and cardiomyopathy, and single-nucleotide polymorphisms (SNPs) linked to SCN5A splicing, localization, and function associate with heart failure–related sudden cardiac death. However, the clinical relevance of SNPs that modulate SCN5A expression levels remains understudied. We recently generated a transcriptome-wide map of microRNA (miR) binding sites in human heart, evaluated their overlap with common SNPs, and identified a synonymous SNP (rs1805126) adjacent to a miR-24 site within the SCN5A coding sequence. This SNP was previously shown to reproducibly associate with cardiac electrophysiological parameters, but was not considered to be causal. Here, we show that miR-24 potently suppresses SCN5A expression and that rs1805126 modulates this regulation. We found that the rs1805126 minor allele associates with decreased cardiac SCN5A expression and that heart failure subjects homozygous for the minor allele have decreased ejection fraction and increased mortality, but not increased ventricular tachyarrhythmias. In mice, we identified a potential basis for this in discovering that decreased Scn5a expression leads to accumulation of myocardial reactive oxygen species. Together, these data reiterate the importance of considering the mechanistic significance of synonymous SNPs as they relate to miRs and disease, and highlight a surprising link between SCN5A expression and nonarrhythmic death in heart failure.

Authors

Xiaoming Zhang, Jin-Young Yoon, Michael Morley, Jared M. McLendon, Kranti A. Mapuskar, Rebecca Gutmann, Haider Mehdi, Heather L. Bloom, Samuel C. Dudley, Patrick T. Ellinor, Alaa A. Shalaby, Raul Weiss, W.H. Wilson Tang, Christine S. Moravec, Madhurmeet Singh, Anne L. Taylor, Clyde W. Yancy, Arthur M. Feldman, Dennis M. McNamara, Kaikobad Irani, Douglas R. Spitz, Patrick Breheny, Kenneth B. Margulies, Barry London, Ryan L. Boudreau

×
  • ←
  • 1
  • 2
  • 3
  • …
  • 36
  • 37
  • →
Calpain-6 mediates atherogenic macrophage function
In this episode, Takuro Miyazaki and colleagues reveal that elevation of calpain-6 in macrophages promotes atherogenic functions by disrupting CWC22/EJC/Rac1 signaling.
Published August 15, 2016
Author's TakeCardiology

Kruppel-like factor 4 keeps the heart healthy
Xudong Liao and colleagues identify KLF4 as an important regulator of mitochondrial development and function in the heart…
Published August 4, 2015
Scientific Show StopperCardiology
Thumb sss 79964

Oxidation impedes cardioprotection
Taishi Nakamura and colleagues reveal that oxidation prevents the beneficial effects of PKG1α in response to cardiac stress…
Published May 4, 2015
Scientific Show StopperCardiology
Thumb 80275 sss
Advertisement
Follow JCI: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts