PICOT inhibits cardiac hypertrophy and enhances ventricular function and cardiomyocyte contractility

D Jeong, H Cha, E Kim, M Kang, DK Yang… - Circulation …, 2006 - Am Heart Assoc
D Jeong, H Cha, E Kim, M Kang, DK Yang, JM Kim, PO Yoon, JG Oh, OY Bernecker…
Circulation research, 2006Am Heart Assoc
Multiple signaling pathways involving protein kinase C (PKC) have been implicated in the
development of cardiac hypertrophy. We observed that a putative PKC inhibitor, PICOT (P
KC-I nteracting C ousin O f T hioredoxin) was upregulated in response to hypertrophic
stimuli both in vitro and in vivo. This suggested that PICOT may act as an endogenous
negative feedback regulator of cardiac hypertrophy through its ability to inhibit PKC activity,
which is elevated during cardiac hypertrophy. Adenovirus-mediated gene transfer of PICOT …
Multiple signaling pathways involving protein kinase C (PKC) have been implicated in the development of cardiac hypertrophy. We observed that a putative PKC inhibitor, PICOT (PKC-Interacting Cousin Of Thioredoxin) was upregulated in response to hypertrophic stimuli both in vitro and in vivo. This suggested that PICOT may act as an endogenous negative feedback regulator of cardiac hypertrophy through its ability to inhibit PKC activity, which is elevated during cardiac hypertrophy. Adenovirus-mediated gene transfer of PICOT completely blocked the hypertrophic response of neonatal rat cardiomyocytes to enthothelin-1 and phenylephrine, as demonstrated by cell size, sarcomere rearrangement, atrial natriuretic factor expression, and rates of protein synthesis. Transgenic mice with cardiac-specific overexpression of PICOT showed that PICOT is a potent inhibitor of cardiac hypertrophy induced by pressure overload. In addition, PICOT overexpression dramatically increased the ventricular function and cardiomyocyte contractility as measured by ejection fraction and end-systolic pressure of transgenic hearts and peak shortening of isolated cardiomyocytes, respectively. Intracellular Ca2+ handing analysis revealed that increases in myofilament Ca2+ responsiveness, together with increased rate of sarcoplasmic reticulum Ca2+ reuptake, are associated with the enhanced contractility in PICOT-overexpressing cardiomyocytes. The inhibition of cardiac remodeling by of PICOT with a concomitant increase in ventricular function and cardiomyocyte contractility suggests that PICOT may provide an efficient modality for treatment of cardiac hypertrophy and heart failure.
Am Heart Assoc