Novel Brugada syndrome‐causing mutation in ion‐conducting pore of cardiac Na+ channel does not affect ion selectivity properties

AS Amin, AO Verkerk, ZA Bhuiyan… - Acta physiologica …, 2005 - Wiley Online Library
AS Amin, AO Verkerk, ZA Bhuiyan, AAM Wilde, HL Tan
Acta physiologica scandinavica, 2005Wiley Online Library
Aim: Brugada syndrome is an inherited cardiac disease with an increased risk of sudden
cardiac death. Thus far Brugada syndrome has been linked only to mutations in SCN5A, the
gene encoding the α‐subunit of cardiac Na+ channel. In this study, a novel SCN5A gene
mutation (D1714G) is reported, which has been found in a 57‐year‐old male patient. Since
the mutation is located in a segment of the ion‐conducting pore of the cardiac Na+ channel,
which putatively determines ion selectivity, it may affect ion selectivity properties. Methods …
Abstract
Aim:  Brugada syndrome is an inherited cardiac disease with an increased risk of sudden cardiac death. Thus far Brugada syndrome has been linked only to mutations in SCN5A, the gene encoding the α‐subunit of cardiac Na+ channel. In this study, a novel SCN5A gene mutation (D1714G) is reported, which has been found in a 57‐year‐old male patient. Since the mutation is located in a segment of the ion‐conducting pore of the cardiac Na+ channel, which putatively determines ion selectivity, it may affect ion selectivity properties.
Methods:  HEK‐293 cells were transfected with wild‐type (WT) or D1714G α‐subunit and β‐subunit cDNA. Whole‐cell configuration of the patch‐clamp technique was used to study biophysical properties at room temperature (21 °C) and physiological temperature (36 °C). This study represents the first measurements of human Na+ channel kinetics at 36 °C. Ion selectivity, current density, and gating properties of WT and D1714G channel were studied.
Results:  D1714G channel yielded nearly 80% reduction of Na+ current density at 21 and 36 °C. At both temperatures, no significant changes were observed in V1/2 values and slope factors for voltage‐dependent activation and inactivation. At 36 °C, but not at 21 °C, D1714G channel exhibited more slow inactivation compared with WT channel. Ion selectivity properties were not affected by the mutation at both temperatures, as assessed by either current or permeability ratio.
Conclusion:  This study shows no changes in ion selectivity properties of D1714G channel. However, the profoundly decreased current density associated with the D1714G mutation may explain the Brugada syndrome phenotype in our patient.
Wiley Online Library