Expression of scavenger receptor BI in COS-7 cells alters cholesterol content and distribution

G Kellner-Weibel, M de La Llera-Moya… - Biochemistry, 2000 - ACS Publications
G Kellner-Weibel, M de La Llera-Moya, MA Connelly, G Stoudt, AE Christian, MP Haynes…
Biochemistry, 2000ACS Publications
Previous studies have shown that scavenger receptor BI (SR-BI) stimulates the bidirectional
flux of free cholesterol (FC) between HDL and SR-BI-expressing cells. A major component of
the enhanced FC flux appears to occur independently of HDL binding to SR-BI and may be
due to changes in membrane lipid domains resulting from SR-BI expression (). In the
present study, the impact of SR-BI on cellular cholesterol metabolism was determined by
examining SR-BI-mediated changes in cellular cholesterol mass, the esterification of HDL …
Previous studies have shown that scavenger receptor BI (SR-BI) stimulates the bidirectional flux of free cholesterol (FC) between HDL and SR-BI-expressing cells. A major component of the enhanced FC flux appears to occur independently of HDL binding to SR-BI and may be due to changes in membrane lipid domains resulting from SR-BI expression (). In the present study, the impact of SR-BI on cellular cholesterol metabolism was determined by examining SR-BI-mediated changes in cellular cholesterol mass, the esterification of HDL-derived FC, and changes in membrane lipid pools. Growth of SR-BI-expressing cells in medium containing HDL led to increased cellular cholesterol mass, most of which accumulated as ester. The esterification of HDL-derived FC was enhanced by SR-BI-expression to a far greater extent than the SR-BI mediated increase in FC uptake, suggesting an SR-BI-mediated effect on cholesterol utilization in the cell. This observation was tested by comparing FC esterification rates in SR-BI positive and negative cells when equivalent amounts of extracellular FC were taken up via cyclodextrins or apolipoprotein AI/phospholipid disks, neither of which contained cholesteryl ester. Under these conditions, SR-BI did not preferentially stimulate cholesterol esterification. These results indicate that the enhanced esterification of HDL-derived FC in SR-BI-expressing cells is due to the expanded pool of cellular FC and not to a specific effect of SR-BI on cholesterol utilization. Two approaches were used to test the effects of SR-BI expression on membrane lipid organization. In the first, the sensitivity of cellular FC to exogenous cholesterol oxidase was tested under conditions in which there is a preferential oxidation of caveolar cholesterol. SR-BI-expression was found to greatly increase the fraction of cellular cholesterol available to the oxidase as compared to either vector-transfected cells or cells expressing the related class B scavenger receptor CD36. These results suggest that SR-BI expression alters the distribution of membrane-free cholesterol to a caveolar fraction or alters the accessibility of this membrane fraction to exogenous cholesterol oxidase. In the second approach, the efflux of cellular FC to high concentrations of cyclodextrins was monitored under conditions where desorption of FC from the plasma membrane is rate limiting for efflux. SR-BI-expressing cells showed a shift in the distribution of FC between two kinetic pools with more FC in the fast pool and less in the slow pool. These data support a model in which SR-BI expression leads to a redistribution of cholesterol to membrane domains that serve to facilitate the flux of FC between cells and lipoproteins.
ACS Publications